

Billund Biorefinery

WWTP contributes to Circular Economy

And from 17 SDG – we have selected 5

Chitra S Raju
Process Manager,
Billund Vand
csr@billundvand.dk

Who are we?

- Public utility company
- Owned by the municipality of Billund
- Consists of four companies
 - Billund Drinking Water
 - Billund Wastewater
 - Grindsted Wastewater

Billund Energy

Billund Biorefinery

What do we do?

- Drinking water supply
- Wastewater treatment
- Treatment of Organic fraction of municipal solid wastes
- Treatment of Industrial organic wastes
- Energy production both electricity and heat
- Produce valuable products from waste streams from the municipality
- Provide direct service to the customer drinking water, sewerage, waste management
- Provide consultation for other utility companies; national and international
- Officially supported as a Lighthouse for Danish water technology
- Strong collaboration with industries in the municipality win-win strategy

The Business plan in Billund Vand and Energy

- 1. Strong collaboration with Industries:
- Win-Win situation
- Complex economic agreement
- Extensive collaboration between operations teams

- 2. Reduction of costs
- We are strongly focused on reducing the costs due to regulations from the national government!
- Therefore the Plan for Wastewater 2014-2035
- Wastewater will reduce costs within 20 % (≈3.8 million DKK or 520000 Euros or 600000 USD)
- Drinking water will reduce costs within 30 % (≈ 1.3 million DKK or 173700 Euros or 200000 USD)
- Annual production of electricity and heat (green energy) worth at least 10 million DKK (≈ 1.3 mill. Euros or 1.5 mill. USD)

Have to reduce costs -<u>Total Expenses</u> - every year as announced annually by the government

Billund BioRefinery Resource Recovery for the Future

Billund Biorefinery is a high profile project launched by Krüger-Veolia and Billund Vand A/S in a Public-Private partnership

A short history of BBR

- Grindsted wastewater treatment plant
 - Commissioned in 1996
 - Combined treatment of wastewater and organic wastes from WWTP, households and industries
 - One of the first in the world
- 2013 A competition about defining the WWTP of the future a lighthouse project by the Miljøstyrelsen
 - Governmental grant as reward for the best ideas
- Grant amount
 - 15 million DKK (≈2 million Euros or 2.3 millon USD)
- Total budget
 - 72.5 million DKK (≈ 9.7 million Euros or 11.2 million USD)
- Public private partnership
 - Billund Vand A/S and Krüger-Veolia
 - Bilateral learning
- Add-ons to enhance existing biorefinery

A unique solution

STAR/AQUAVISTA

Known_technologies

Energy efficient aeration

<u>Description of add-ons – Water recovery</u>

Water recovery

Industrial wastewater
560 m³/day
19200 PE_{COD}

Domestic wastewater 11900 m³/day 42000 PE_{COD}

Sludge to energy section

Water recovery

Quality of Effluent - regulation

Kontrolvariable	Grænse- værdi	Kontrolmetode
Flow (I/s)	430	Absolut (maks.)
BOD _{modificeret} (mg/l)	10	Transportkontrol
COD (mg/l)	75	Transportkontrol
Total-P (mg/l)	1,5	Transportkontrol
Total-N (mg/l)	6	Transportkontrol
Ammoniak-kvælstof (mg/l)	2	Tilstandskontrol
Ammoniak-kvælstof (mg/l)	5	Absolut (maks.)
Suspenderet stof (mg/l)	15	Tilstandskontrol
Acrolein (µg/l)	0,02	Transportkontrol
Natamycin (µg/l)	2	Transportkontrol
Kviksølv (μg/l) – filtreret1)	0,18	Transportkontrol
Bly (µg/l) - filtreret ^{1) + 2)}	12	Transportkontrol
Cadmium (µg/l) - filtreret ^{1) + 2)}	0,9	Transportkontrol
Krom (µg/I) - filtreret ^{1) + 2)}	49	Transportkontrol
Kobber (µg/I) - filtreret ^{1) + 2)}	49	Transportkontrol
Nikkel (µg/l) - filtreret ^{1) + 2)}	40	Transportkontrol
Zink (µg/l) - filtreret ^{1) + 2)}	31	Transportkontrol
pH	6,5 – 9,0	Absolut (min/maks.)
llt	60 %	Absolut (min.)

Actual quality

Data from 2017 to 2020	Regulation	Effluent	Removal efficiency %
COD mg/L	75	46	93
TN mg/L	6	4,7	92
TP mg/L		0,4	94
BOD mod mg/L		3,7	98
NH4 mg/L		1,3	97
SS mg/L	15	7,6	98

Water recovery

- 4.5 million m³/ year cleaned water
- We pay pollutant taxes per kilogram of pollutant let out
 - Even if we are below the effluent limit!
 - Important to reduce pollutant load as much as possible
- A Hydrotech filter was installed as part of BBR
 - Eliminated the need for lagoons for polishing
 - Reduced SS load on the recipient during rainy season
 - Was shown to reduce measurable microplastics mass by 77%

<u>Description of add-ons – Energy recovery</u>

Source separated organic fraction of household wastes

Energy positive

Thermophilic, 55°C 1500 m³ Residence time: 13 days Sulzer mixer, recirculation Gaswasher

3200 Nm³/day (63 % CH₄)

Digester

Exelys Continuous thermal hydrolysis unit 15 to 18% input DS 160°C at 8 bars for 30 min

Lysis Digester

Mesophilic, 37°C 2800 m³ Residence time: 27 days Halberg mixer, recirculation 6200 Nm3/day (69 % CH₄)

DLD configuration with Exelys

Energy requirement:

Biogas used for Exelys process heat: 270 to 300 m3/day

Energy positive

0,00

2010

2011

2012

2013

Total energy production, GWh

2014

2015

2016

■ Total energy use, GWh

2017

2018

2019

2020

Energy, ratio of Production/Usage

---- Production/Usage

18,00 16,00 14,00 **Energy neutral** 12,00 10,00 GWh 8,00 6,00 4,00 2,00

Annual energy production and usage

Biomass inputs	Per day, m3	2020, tonnes	Dry solids (%)
Waste activated sludge	50	71442	1.5 to 5%
Primary sludge	50	13003	5%
OFMSW	14	3623	32
Industrial wastes	45	7569	5 to 35%
Exelys treated digestate	40		7%

Energy efficient reject water treatment

- Reduced internal load on wastewater treatment plant
- Removes upto 80% influent Nitrogen
- Reduced aeration requirement by 50%
- Zero use of additional carbon
- Compact
- N₂O considerations

AnitaMox™

Processes-nutrient recovery

Natural fertilizer

2014: 4400 T /year

N-content 49 g/kgTS P-content 29 g/kgTS K-content 2 g/kgTS

2020: 4300 T /year

Fertilizer quality

N-content 51.2 g/kgTS
P-content 27.4 g/kgTS
K-content 1.2 g/kgTS

Natural fertilizer

- Quantity of natural fertilizer reduces drastically due to double digestion and thermal hydrolysis
 - Thermal hydrolysis shown to improve biogas yield by 50% thus reducing outlet solids
- Quality assurance starts at outlets of industries
- Natural fertilizer tested for 7 heavy metals, xenobiotics, plasticizers, PAH's and bacterial contaminants
 - Performed by an accredited third party
 - Results sent directly to Environmental Agency
- High value due to nutrient content

BBR products (2020)

• Energy produced:

•	Total	16 GWh/y
•	Electricity	7.1 GWh/y
•	Heat	8.9 GWh/y

Energy utilized in the entire concern:

•	Total	7.6 GWh/y
•	Electricity	4.2 GWh/y
•	Heat	3.4 GWh/y

Energy production is more than <u>2</u> times than that used in the entire company

This includes the supply of drinking water, sewerage, wastewater cleaning and the production

• Cleaned water: 3.8 million m³/y

Nutrients

 Natural Fertilizer (24 % DS) 	4300 ton/y
 Nitrogen 	51 ton/y
 Phosphorus 	27 ton/y
 Potassium 	1.2 ton/y

BBR-Expected results

Improved efficiency Improved quality Increased capacity

Residues as input

Valuable output

BBR-Actual results

Biomass input

Valuable output

What have we achieved?

- 1. Good performance in economy
- Best in class with regards to the Danish regulation of water and wastewater utilities.
- Wastewater treatment costs reduced by 20 % and costs of producing and distribution of drinking water by 30%.
- Drinking water costs is 0,3 Eurocents/m3
- 2. Good performance in effectivness
- Waterloss below 2%.
- 0,3 leakages/10 km pipes
- Won 'Great place to work' Denmark, in 2017 and 2020

3. Good for the Environment

- The condition of the recipient has improved to 5 on a scale of 6, where 6 is without human impact
- Discharge from wastewater treatment plant better than regulatory requirements
- Recover 94% of influent Phosphorous

Future plans

- Effluent quality
 - Pharmaceutical residues
 - Microplastic
 - Low concentration but high impact pollutants
- Energy production
 - GHG/climate neutral
 - Is production of energy the best use of resources?
 - Other products from recovered resources
 - Focus on phosphorous recovery
- Natural fertilizer
 - Pyrolysis a good option?
 - Loss of Phosphorous
 - Pathogens and Xenobiotics removed
 - Removal of Mercury and microplastics
 - Possibility of recovering energy and nutrients
 - Carbon sequestration

Thank you for your attention

Best Regards,

Chitra S Raju

