Energistyrelsen

Biogas in Denmark

Nathalie Jacobsen Advisor Kristian Havskov Sørensen Chiefadvisor

THE DANISH GAS SYSTEM Increasing production of biogas and decreasing gas consumption

16. april

Side 24

GREEN GAS STRATEGY PUBLISHED DECEMBER 2021

- *Energy Agreement 2018*: Agreement of the Danish Parliament to prepare a Danish strategy for the Danish gas infrastructure and regulation in order to secure at continuous commercial utilization of the gas infrastructure within the green transition.
- The strategy is based on continuous work in parallel with the • climate agenda
- Simultaneously with the electricity and PtX strategies •
- Governmental ambition to have 100 pct. green gas in 2035 - now 2030

NINE FOCUS POINTS

Energistyrelsen

- 1) Green gas must supplement the electrification and
- be used where it has the greatest value
 - 2) Green gas in industry must support jobs in Denmark for the benefit of development and employment
 - Conversion to green gas must occur with consideration
 of competitive tariffs and on commercial terms
 - Production of green gases
 - 4) Over time, green gas must cope with market conditions
 - –• 5) Green gases must be produced sustainably
 - 6) The development of green gas production and gas infrastructure
 - must take place with the close involvement of the citizens concerned
 - and take into account biodiversity and the environment

Gas infrastructure in the future

- 7) The gas system must support and be used for the green gases of the future
- 8) The gas system must be adapted and effectively support the energy system of the future and contribute with flexibility and security of supply
- 9) Denmark must work for the development of a well-functioning European market for green gases

Technology Projections

Danish Energy
 Agency

DEVELOPMENT IN BIOGAS PRODUCTION AND CONSUMPTION CLIMATE PROJECTION (KF23)

Page

Biogasproduction

Greening the Gas Consumption - Scenarios

FEEDSTOCK - RESIDUES

Input biomass

- Manure
- Straw

Danish Energy

Agency

- Potato/beet pulp
- Soapstock
- Industrial waste

- Energy Crops
- Husk
- Fisheries residues
 - Melasse
 - Household pulp

 \sim

- Crop residues
- Olive residues
- Slaugtherhouse waste
- Glycerine

Yield

Biomasses

Biogas			Gas produced		
2021-2022	Tonnes		mio. Nm3		
Manure	11.701.000	74%	335	31%	
Energy Crops	833.000	5%	127	12%	
Crop residues	184.000	1%	26	2%	
Straw	193.000	1%	60	6%	
Husk	121.000	1%	41	4%	
Olive residues	36.000	0%	11	1%	
Potato/beet pulp	306.000	2%	22	2%	
Fisheries residues	212.000	1%	31	3%	
Slaugtherhouse waste	514.000	3%	75	7%	
Soapstock	110.000	1%	49	4%	
Melasse	247.000	2%	75	7%	
Glycerine	240.000	2%	130	12%	
Industrial waste	576.000	4%	41	4%	
Household pulp	544.000	3%	62	6%	
Grand Total	15.817.000		1.087		
Energy content PJ			25		
Methane yield, Nm3 pr. tonnes biom	ass		45		

. . .

	Potential (PJ/	Potential (PJ/Year				
	2020	2025	2030	2040		
Manure/ Slurry	5	6	12	20 ⁶		
Straw	1	5	15 ⁵	45 ⁵		
Deep Litter	0,7	3	6	7		
Waste Food Industry	8	8	8	8		
Discarded Crops	0,3	0,4	0,6	0,9		
Household organic waste	2	6	6	6		
- heraf KOD	2	5	5	5		
- have/park affald	0	1	1	1		
Residuals from vegetal crops	1	2	7	7		
 heraf roetoppe og andre toppe 	0	1	3	3		
- græs fra naturarealer ⁷	1	2	3	3		
- randzoner og grøftekanter	0	0	1	1		
I alt	16	30	55	94		

Future resources	PJ
Sequential cropping	7,4
Residue from grass protein production	3,7

SUSTAINABLE BIOGAS PRODUCTION

<u>Energy crops – future development</u>

- How to further reduce the limit?
- Alternative energy crops?
- Research into synergy effects

SUSTAINABLE BIOGAS PRODUCTION

Methane loss regulation

- Recent report shows avg. 2.9% loss
- New rules:
 - Sources of leak must be identified and improved
 - Annual examination of the plant from 3rd party

Methane loss - status

- Bi-annual workshops with 3rd party controllers
- Revision of guidance document
- Classification of leaks and other sources can be problematic

09/11/2022

Page

SUPPORT SCHEMES

EXPANDING FIRST, THEN DRIVING DOWN SUBSIDY COST Support schemes (lasting 20 years)

- Until 2012: support for CHP using biogas
- 2012-2019: support in 20 years for upgraded biogas (biomethane) and direct applications
- > From 2020: Tenders for biomethane (12,96 billion DKK ≈ 1,7 billion Euro) over 20 years for biomethane

Indirect support

Aaencv

- CO2-reduction in transport using unsupported biomethane
- CO2 tax reduction for unsupported
 biometane In process
 Danish Energy

Annual subsidies

Mio. Euro	2024	2025	2026	2027	2028	2029	2030
Tenders	43	0	0	10	10	12	12
Accumulate d	43	43	43	53	63	75	87

Support scheme 2012 – Upgraded biogas

Support in 2022 for upgraded biogas:

- Base premium 11 Euro/GJ
- Contract for Difference Natural Gas adjusted 7 Euro/GJ
 - CfD adjusted for a gas price 0 Euros/GJ due to high gas prices
 - Higher gas price less Cfd
 - > Lower gas price higher CfD
- Early starters additional premium 2012-2019 Faced out in 2019

MODIFY THE GAS SYSTEM

Agency

HYDROGEN, BIOMETHANE, CO2 AND BIOGAS?

Page

DSO bottlenecks biomethane

Opvarmning og Fjernvarme — Biogas

jan

CHALLENGES AND OPTIONS

ADAPTING THE GAS-GRID(S)

- Adjusting the system to new flow patterns with decentral RE-gas production
- Modify the system for new gasses to transport
- Modify the support scheme
- Blending obligations
- Tax exemptions

Danish Energy

Agency

PTX

4/16/2024

Page

E-methane

 $4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$

Methanol

 $CO_2 + 2H_2 + CH_4 \rightarrow 2CH_3OH$

Questions?

AND A THE

-

